ࡱ> EGD_ R JbjbjFvbb PP846$Zpppp$q#"H]ppHW|||@pp||||p k|m0|k"k"|k"|D||k"P, |: ,{]NJ\2023t^ -NVЏy{f[Opef[ĉRROxvzu[WR~bJT bJTNUSMObJTveV]'Yf[A New Class of Differential Quasivariational Inequalities with an Application to a Quasistatic Viscoelastic Frictional Contact ProblemĞX[f/nt]'Yf[Non-Convergence of Probabilistic Direct Searchs6qWSN^'Yf[Convergence Analysis of Split-Douglas-Rachford Algorithm and a Novel Preconditioned ADMM with an Improved Condition _SN*zz*)Y'Yf[A Faster Prediction-Correction Framework for Solving Convex Optimization Problems fSN'Yf[Achieving Linear Speedup with Network-Independent Learning Rates in Decentralized Stochastic OptimizationUOR͑^'Yf[Spectral Conjugate Gradient Methods for Vector Optimization Problemss[Y'Yf[Optimality of Borwein Robust Properly Effcient Solutions for an Uncertain Multiobjective Optimization Problem via Vector Separation Functionss9NlS]N'Yf[A Varying-parameter Fixed-Time Gradient-based Dynamic Network for Convex Optimization"N_SN5u'Yf[New Gradient Methods with InterpolationUOPhSN'Yf[Unbiased Compression Saves Communication in Distributed Optimization: When and How Much?Ngwm)Y/nt]'Yf[Blockwise Direct Search MethodsUOEu Nwm"~'Yf[A Homogenous Second-Order Descent MethodNgN9SN*zz*)Y'Yf[A Family of Barzilai-Borwein Steplengths from the Viewpoint of Scaled Total Least Squares!Qs5uP[yb'Yf[Inverse Problems for Constrainted Parabolic Variational-hemivariational InequalitieshT`Fk-NVyf[b'Yf[Strong Variational Sufficiency of Nonsmooth Optimization Problems on Riemannian ManifoldshTsy]'Yf[On Wasserstein Distributionally Robust Mean-lower Semi-absolute Deviation Portfolio Model: Tractable Reformulations and Efficient ComputationssU\͑^'Yf[A New Trust Region Framework and Its Application in Box Constrained OptimizationR\CQ/n-Ne'Yf[LogSpecT: Feasible Graph Learning Model from Stationary Signals with Reco>@FHLNVXZ^`hv x z  ȱȱȱzzizzYzzJhX+hCJKHOJQJhX+h5CJKHOJQJ hX+hCJKHOJQJaJ)hX+hB*KHOJQJ_HaJph)hX+hB*KHOJQJ_HaJphhX+hOJQJaJ,hoAh5B*KHOJQJ_HaJph,hoAh5B*KHOJQJ_HaJphhXbh5CJOJQJaJhXbh5CJOJQJaJ@HNXZ`jx Qkd$$IflFSO  t0     44 laytoA$$1$9DIfa$gd7 8XD2YDdgdXbx z n^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA  n^^^$$1$9DIfa$gd7kd:$$IflnFSO  t0     44 laytoA  n^^^$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA  . 0 2 8 : B `bfht "$*,8PRXɶޡɒɒއv hX+hKHOJQJ_HaJhX+hOJQJhX+hCJKHOJQJ)hsmhB*KHOJQJ_HaJph%hX+hB*CJOJQJaJph)hX+hB*KHOJQJ_HaJph)hX+hB*KHOJQJ_HaJphhX+hOJQJaJ) n^NN$ $Ifa$gd7$$1$9DIfa$gd7kdt$$IflnFSO  t0     44 laytoA 0 n^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA0 2 : D `n^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA`bhv"n^NN$ $Ifa$gd7$$1$9DIfa$gd7kdK$$IflnFSO  t0     44 laytoA"$,:n^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAPn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAPRZhn^RR $$Ifa$gd7$$1$9DIfa$gd7kd"$$IflnFSO  t0     44 laytoAXZf*prxzTVX^`l@@ @"@(@*@6@@@@@@@Aɾ޾޾޾޾޾޾޾Ɍ޾)hX+hB*KHOJQJ_HaJphUhX+h5CJOJQJhX+hOJQJaJhX+hOJQJ)hX+hB*KHOJQJ_HaJph hX+hKHOJQJ_HaJ hX+hKHOJQJ_HaJ7n^NN$ $Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA,n^NN$ $Ifa$gd7$$1$9DIfa$gd7kd\$$IflnFSO  t0     44 laytoAn^NN$ $Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoApn^NN$ $Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAprzn^RR $$Ifa$gd7$$1$9DIfa$gd7kd3 $$IflnFSO  t0     44 laytoAVn^RR $$Ifa$gd7$$1$9DIfa$gd7kd $$IflnFSO  t0     44 laytoAVX`n @n^RR $$Ifa$gd7$$1$9DIfa$gd7kdm $$IflnFSO  t0     44 laytoAvery GuaranteesYN)Y Nwm"~'Yf[A Universal Trust-Region Method for Convex and Nonconvex OptimizationNg[[nNS'Yf[The Global R-linear Convergence of Nesterov's Accelerated Gradient Method with Unknown Strongly Convex Parameter4T=m/nt]'Yf[A Regularized Newton Method for EMBED Equation.DSMT4Norm Composite Optimization ProblemsVsO['Yޏt]'Yf[Preconditioned Primal-Dual Gradient Methods for Nonconvex Composite and Finite-Sum Optimization闇es[Y'Yf[Optimality and Error Bound for Set Optimization with Application to Uncertain Multi-objective ProgrammingY[k-NVyf[b'Yf[The Regularized Submodular Maximization via the Lyapunov Method1gNiWSN'Yf[Adaptive Sampling Strategies for Stochastic Composite OptimizationHO[eRaWVz'Yf[Semidefinite Relaxations of the Gromov-Wasserstein DistanceT[PNe/n-Ne'Yf[Outlier-Robust Gromov Wasserstein for Graph DataYgUx-NVyf[b'Yf[A Smooth Locally Exact Penalty Method for Optimization Problems over Generalized Stiefel ManifoldsseRWS f'Yf[ƖB@BBBBBBBBdCfClCnCvCLDNDRDTDbDDDDDD~EEEEEFFFϺϯ}ϺϯϺϯϺϯϺϯϺϯl hX+hKHOJQJ_HaJ!j hX+hEHOJQJU#jQSh hX+hOJQJUVjhX+hOJQJUhX+hOJQJ)hX+hB*KHOJQJ_HaJph)hX+hB*KHOJQJ_HaJphhX+hOJQJaJhX+h5CJOJQJ'AAAABn^RC$d$Ifa$gd7 $$Ifa$gd7$$1$9DIfa$gd7kdD $$IflnFSO  t0     44 laytoABBBBdCn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAdCfCnCxCLDn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoALDNDTDdDDn^RR $$Ifa$gd7$$1$9DIfa$gd7kdJ$$IflnFSO  t0     44 laytoADDDD~En^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoA~EEEEFn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAFFF(FFn^RR $$Ifa$gd7$$1$9DIfa$gd7kd!$$IflnFSO  t0     44 laytoAFF&FFFFFFjGlGrGtG|G~GGGGGGGGGGGHHHHHHhIjIpIrIzI|IIIIIIIIJJJJƱƱӑƱƱƱӑƱƂ~vjh0UhXChX+hCJ$OJQJaJ$hX+hOJQJ)hX+hB*KHOJQJ_HaJph)hX+hB*KHOJQJ_HaJphhX+hOJQJaJhX+hOJQJ hX+hKHOJQJ_HaJ hX+hKHOJQJ_HaJ.FFFFjGn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAjGlGtG~GGn^RR $$Ifa$gd7$$1$9DIfa$gd7kd[$$IflnFSO  t0     44 laytoAGGGGGn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAGGGHHn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAHHHHhIn^RR $$Ifa$gd7$$1$9DIfa$gd7kd2$$IflnFSO  t0     44 laytoAhIjIrI|IIn^RR $$Ifa$gd7$$1$9DIfa$gd7kd$$IflnFSO  t0     44 laytoAIIIIIn^RR $$Ifa$gd7$$1$9DIfa$gd7kdl$$IflnFSO  t0     44 laytoAIJJJJ JJJJJJJnidibibibibgdC;2gdkd $$IflnFSO  t0     44 laytoA J J JJJJJJ JhXCjh0Uh0JJ JgdC;2DP182P/R :p7. A!"#$%S Dp$$If!vh#v#v#v:V l t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA/Dd z  BA?(8 ?Object 1C"`2U@(' G+Cԕ1% l`!)@(' G+Cԕ`xuRk@}3ٍHUV4-Dģi6Z+㚶lvhN]D C[ċMA} 8d2o|ߛ@Pv ԥ "GBNWr.QyUC-/qҁ 0W'A S@G$ Ua5"~r2=OBӝMq"8a2-ckRUҥbs龘iĥB{4U֦`cG[a c9ĭk%ǽvdtu ƍZivZeAdտ緽m?FW?տh(wZOh~kGqslgv5Ϝ&|\3ٹl58gҸIKt?SoR*RAE*ѼLnVil~)T8.^.U7SEMtkx,\q0r<%PO   !"#$%&'()*+,-./0123456789:;=>?@ABCLFIJRKQMNOPeTUVWXYZ[\]^_`abcdRoot Entry  FuHData <WordDocument FvObjectPool PJju_1759728465FPJjPJjOle CompObjiObjInfo ! FMathType 6.0 Equation MathType EFEquation.DSMT49q h.  ` & MathTypep& "Times New RomanTؔttf f- 2 OlePres000 Equation Native 1TableSk"SummaryInformation( qy4MT Extra$ Tؔttf f- 2 ly&AppsMFCCDesign Science, Inc. DSMT6WinAllCodePagesWinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  !l q & "Systemf f 8-t)T ) DSMT6WinAllCodePagesWinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  !l qOh+'0X    ,8@HPy-VD1>$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoA$$If!vh#v#v#v:V ln t0 ,555ytoAAdministratorNormalPC4Microsoft Office Word@ @/2@8 ՜.+,0 X`lt|   DocumentSummaryInformation8CompObj nj 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nHsH tHN`N cke $1$a$$CJKHPJ_HaJmH nHsH tH$A`$ ؞k=W[SOBi@B 0nfhxjm)ʬuWLfdݮ+5_4csj-V?k3rm}gz gs嚋7xwsȈR W*)|jȫKXͫ dXIBF؇bnh ( *'vɗ3KZjz'c*_=}<9ݻw~]8^~_o?xYýg~^G}J0Emh=Ԅ Ξa>s$-, Oɠ=Hp Ua/ UO d*:(.fTU/!9$V[|hrvs-iUt. 6ڪ4Cebs)bMjBekp um,fd$͑{6GUVf~b#Vb@qTTW.ޛd)i@vdq9Y^X7{2%uHx+af6]>f#sm*qqDHehK)@?71oggo`:fղekp£2֌Nj8ǰD CB?81e>nEeU}H]dm1iQ6褣֧  v  XAFJ J (09x 0 `"PpV @@ABdCLDD~EFFjGGGHhIIIJ J &')*+,-./12345678:   :T # @H 0(  0(  B S  ? #'+04Qa)1xzJM13),4=UW(CRUepRTKTcfGJ' ) B L b j s v # ) F I  R U       LMUWGJF I       3s333333333 5xJS1;)_R^RZclGR' 2 s |  F R  R [         0C;27=oAXC&wXb7aJ~  @ X pp ppppp@UnknownG*Ax Times New Roman5Symbol3. *Cx Arial;([SOSimSun7.@ Calibri1. R<(_oŖў5. .[`)TahomaA$BCambria Math qhʺgGԺ8 8 !?!%),.:;>?]}    & 0 2 3 : !6"000 0 0 0000006:>@DZ\^ =@\]^$([{  0 0 000000Y[];[2  3QHX $P2!xx  AdministratorPC  FMicrosoft Word 97-2003 ĵ MSWordDocWord.Document.89q